
The Economic Impact of Software Development Process Choice -

Cycle-time Analysis and Monte Carlo Simulation Results
Troy Magennis

 troy.magennis@focusedobjective.com

Abstract
IT executives initiate software development

process methodology change with faith that it will

lower development cost, decrease time-to-market and

increase quality. Anecdotes and success stories from

agile practitioners and vendors provide evidence that

other companies have succeeded following a newly

chosen doctrine. Quantitative evidence is scarcer

than these stories, and when available, often

unverifiable.

This paper introduces a quantitative approach to

assess software process methodology change. It

proposes working from the perspective of impact on

cycle-time performance (the time from the start of

individual pieces of work until their completion),

before and after a process change.

This paper introduces the history and theoretical

basis of this analysis, and then presents a commercial

case study. The case study demonstrates how the

economic value of a process change initiative was

quantified to understand success and payoff.

Cycle-time is a convenient metric for comparing

proposed and ongoing process improvement due to

its easy capture and applicability to all processes.

Poor cycle-time analysis can lead to teams being

held to erroneous service level expectations. Properly

comparing the impact of proposed process change

scenarios, modeled using historical or estimated

cycle-time performance helps isolate the bottom line

impact of process changes with quantitative rigor.

1. Introduction

Company IT leadership often initiate software

development process improvements due to dis-

satisfaction with time to market and development

cost. Leaders responsible for product direction have

many ideas, but feel these ideas take too long to make

it into their customers’ hands. These leaders get

frustrated that competitors are (or appear) faster to

market than their organization, and look for ways to

compete more equitably.

Process change proponents and vendors offer a

variety of the latest tools, books, training, and

certification as immediate relief to the vague “too

slow” and “too costly” symptoms. XP, Agile, Lean,

Scrum, and Kanban are some of the well-known

processes that have risen to the top of the popularity

charts, each with case studies (often just one)

showing great impact when applied correctly by the

inventors. The final choice appears to fall on faith

based lines, with many organizations moving from

one process to the next in search of nirvana. A

quantitative framework for estimating and assessing

true impact is needed for informed decisions.

Measuring the quantitative impact of a software

development process change is hard. Measurable

change takes weeks or months to evolve, and there is

little in the way of control group – change is

implemented and the outcome if that change wasn’t

performed isn’t an interesting or easily discernable

metric. This paper presents one technique for

quantitatively estimating the potential economic

outcomes both before and after a change has been

implemented.

The basis for the method described here is

probabilistically simulating the impact of changes in

cycle-time samples from a prior project to a

completed project using new methodology. To

estimate the potential payoff for a new process,

existing cycle-time samples can be discounted by

fixed percentage amount to simulate the financial

return for hypothetical reductions (10%, 25%, for

example). Once change has occurred, actual results

can be compared to the predicted data to validate the

difference and improve modeling efforts on future

initiatives.

This paper also looks at the impact of process

change on cycle-time over the last 40 years to

determine if there is a pattern. Understanding the

forces at work causing changes in cycle-time

distribution data throughout process improvement

over this time hints at what management strategies

will give the biggest return on investment. This

knowledge helps choose the contextually correct

process strategy in a compelling and confident way.

The goal of this paper is two-fold:

1. Discuss the cycle-time distribution patterns

and parameters for different known software

development processes.

2. Demonstrate the use of cycle-time data as a

comparative tool for calculating potential and

actual economic benefit of process change.

2. Structure of this paper

This paper consists of three major sections –

1. Cycle-time distribution analysis, and how

development process can manipulate the

shape and uncertainty of this distribution

2. Probabilistic modelling of software processes

using cycle-time for delivery estimate and

how to formulate an economic model for

process change.

3. Case study: Practical application of cycle-

time analysis as presented in an economic

benefit project for an industry client.

The first part of this paper introduces cycle-time

in software development processes and develops the

theory behind why cycle-time value distribution

consistently follows very similar patterns across

teams and organizations.

The second part of this paper shows how through

statistical modelling, the likely improvement of

process changes can be simulated and an economic

argument used to justify the effort of process change.

The third section will demonstrate and show the

application of a cycle-time comparative technique

used in industry.

3. Cycle-time distribution analysis

3.1. Defining cycle-time

Cycle-time is defined as the time between starting

date and completion date of work items. In software

development this is most often measured in days, but

can be in hours for teams with small work items that

are started and completed in the same day. This paper

always presents cycle-times in days.

No consistent definition of work item “start” and

“complete” has emerged as standard in IT process.

Definition often differs between departments and

teams within an organization. For the purposes of this

paper, any consistently defined start and complete

date is acceptable as long as it is consistently applied

when capturing cycle-time data. Cycle-time is a good

candidate metric for prediction and comparison

because it is an elapsed time measurement that is not

measured in abstract units (such as function points,

story points and velocity – common in agile).

Increasingly, electronic tools are used to manage

the software development process and automatic

capture of cycle-time data is common-place. The

richness of this data hasn’t been surfaced beyond

scatter plots and for some tools a histogram as eye

candy. This paper describes how this data can be

leveraged for predictive purposes.

If no policy and/or process is currently in place

for capturing cycle-time data then the following

guidance is offered. These are also the definitions

used in this paper -

1. Capture the date that work items are first

created as an idea. This data is useful for

understanding if there is a decrease in “first

idea” to customer delivery. This will be

referred to as Created Date in this paper.

2. Capture the date that work items are

prioritized for work to begin. This is the date

that a company has committed to delivering

the work item, or has to put “effort” into

creating the intended result from the work

item. This will be referred to as Started Date

in this paper.

3. Capture the date work is ready for delivery to

a customer. This is referred to as Completed

Date in this paper.

4. Capture the date work items are first exposed

to customers in a usable way. This is referred

to as In Production Date in this paper.

Given these definitions of the times, the following

definitions will be defined in this paper as –

(1) Lead-time = In Production Date – Created Date

(2) Cycle-time = Completed Date – Started Date

Lead-time (1) is defined as the time between

when work description is created, and that work is

delivered to production. Cycle-time (2) is defined as

the time between when hands-on work begins on a

piece of work until it is considered complete.

 This paper focuses on cycle-time in its examples

and case study. It is feasible, and likely that the same

factors of probability distribution are at play at a

lead-time level and this will be the subject of future

work.

3.2. Cycle-time probability distribution

3.2.1. Analysis of industry data. Norden [1] in

1963, then Putnam and Myers [2] in 1978 empirically

established that software projects follow a Rayleigh

density distribution in staffing estimation and effort.

Kan [3] in 2002 extended the use of the Rayleigh

model to include defect removal rate and remaining

defect prediction. The Rayleigh distribution is a

specific form of the Weibull distribution (shape

parameter of 2.0), and this paper proposes that cycle-

time follows the Weibull probability distribution with

lower shape parameters from 1.0 to 1.6 depending on

process and inter-team dependency factors.

Cycle-time histograms obtained during many

commercial client engagements established the

prevalence of left-skewed density distributions. The

lack of this pattern in software development cycle-

time is often an indicator of poor data capture.

Although it is not essential to know the exact

distribution curve for modelling an existing process

when actual data samples can be used when

simulating [13], curiosity drove my initial attempts to

determine what distribution and why. Candidate

probability distributions are Gamma, Weibull,

Rayleigh and Log-Normal as shown in Figure 1 fitted

to a typical agile team in a commercial context.

Figure 1 – Potential probability distribution
fits against a typical commercial data-set

When faced with multiple potential correct

distributions fitting historical data, the “safest” is

chosen. For forecasting dates, longer is safer – if a

project is valid delivering later, then it is likely still a

valid investment delivered early. The Weibull

distribution is the wiser choice having a heavier tail,

meaning the decay in higher values is at a slower rate

(higher values have higher probability) when

compared against Log-Normal. It also proved a

successful candidate when used as an initial estimate

on prior commercial projects.

Written evidence suggesting Weibull is

appropriate for modeling similar problems was found

by Fente, Schexnayder, and Knutson [5] who

describe Weibull as a good candidate for modeling

construction and engineering. And McCombs, Elam

and Pratt [4] chose Weibull as most appropriate for

modeling task durations in PERT analysis.

McCombs et al [4] and Fente et al [5], outlined

the desirable attributes of an acceptable distribution

for modeling task durations -

1. It is continuous.

2. It has finite endpoints.

3. It has a defined mode between its endpoints.

4. It is capable of describing both skewed and

symmetric activity time distributions.

The Weibull distribution is a good choice for all

but point 2 - finite endpoints. It could be argued that

this isn’t a necessarily desirable attribute for a cycle-

time distribution; Long delays of very low likelihood

occur in the real software development world.

Extremely large values have even extremely small

probabilities, and when used in a probabilistic

prediction, their influence should they occur is

minimal. McCombs et al [4] noted that although not a

mathematical property of the Weibull distribution,

commercial practicalities eliminate (ridiculously

long) non-finite endpoints. Tasks taking far longer

than anticipated will more often be identified and

solved with resourcing and attention of causes.

Fitting actual commercial data and finding

confirming prior research increases confidence that

Weibull distribution is the most likely candidate.

Confirming this with a plausible simulation of a

typical real world software development process is

valuable to understand limitations, ramifications and

potential utilization.

3.2.2. Process factors causing skewed distribution.
The software development process involves taking a

description of ideas and creating a manifestation of

those ideas in working computer code. Large ideas

are meticulously broken down into smaller ideas, and

implemented incrementally. Each work item builds

on the previously completed computer code.

XP, Scrum, Kanban, and Agile, all decompose

work items into smaller batches of work for delivery,

but differ in approach. These batches of work go by

various names: user stories, cards and work items are

commonly used (this paper always uses the name

work items for no reason other than consistency).

Work items pass through a variety of steps from

idea to solution. Although it is simple to think of a

software development process like a factory

production line where work follows a pre-defined

step-by-step process. The key difference is that every

work item is different in a functional way from the

others. Each work item is solving a different

problem. Rather than building many of the same

things as in factory production, software development

is building consecutive one offs. Efforts to model

software development in similar ways to traditional

manufacturing production line thinking fails to

embrace this key difference.

Traditional repetitive manufacturing process cycle

times will lead to a Gaussian response. Work-items

flow through fixed sequence of assembly with some

Probability Density Function

Histogram Gamma (3P) Lognormal Rayleigh Weibull

x

1301201101009080706050403020100-10

f(
x
)

0.32

0.28

0.24

0.2

0.16

0.12

0.08

0.04

0

f(
x
)

x

bounded variance. This process yields a Normal

distribution due to the Central Limit Theorem.

This expected Gaussian result is engrained in

quality management practices. Shewart [7, 8] and

Demming [9, 10] make good use of anticipated

Normal distribution in manufacturing for statistically

managing quality. For example, work output is

closely monitored for process deviation, often

through policy to keep variability within certain

ranges of sigma (standard deviation) through

standardization.

Driving for standardization in creative pursuits

often leads to erosion of quality and inventiveness as

teams strive to meet the pre-set control limits at great

effort and at any cost. Acemoglu et al [14] study this

tension between standardization and innovation. For

work that is constant innovation, cycle-time for each

work item will be inherently variable and unlikely to

form a Normal distribution pattern.

Software development process has the following

traits that set it apart from standard manufacturing

process and need to be modelled specifically –

1. Work items follow one of many possible

sequential process, not one fixed process for

all items. Some work items skip entire steps.

2. The effort for each process step is different

for each work item. Some harder, some easier

due to the amount of new and known

concepts.

3. The delays each work item might encounter

are different and often unrelated to the work

item itself (key person on vacation, awaiting

another item to finish).

4. Completing some work items identifies new

work. Missed requirements, un-identified

complexity and defects are examples.

5. The uncertainty of effort and delays of each

work item means that the system

continuously operates in an unstable state,

where constraints move, emerge and resolve.

To simulate the simplest process that causes

asymmetry in cycle-time, a simple Monte Carlo

model can be built. This model explains how initially

known work and a combination of potential, but not

guaranteed delays probabilistically convolve into a

Weibull distribution.

The hypothetical model simulates a fixed amount

of work-items being constructed with some uniform

variance. Impacting their on-time completion is the

possibility of 1 to 5 delays occurring, each with a

25% chance of occurrence. These delays are

simulated as an amount of extra work if they occur,

or have no impact if they don’t occur. Delays in

software are a combination of waiting time and

discovered work, but this model simply increases

work item time by adding work.

 Figure 2 shows the result as delays are added in

Histogram form. The Y-Axis is count (probability),

and the X-Axis is time (earlier to the left, later to the

right). Peaks emerge and mix based on the binary

permutations of none, some and all delays occurring.

When there are no delays, the result is a Normal

distribution (or would be if modelled with more

cycles). When the first delay is added, 75% of the

outcomes remain un-affected, and 25% incur the

delay as our binomial logic would suggest. When two

delays occur, there are now 3 possible peaks: no

delays occur (left-most), one or the other delay

occurs (middle), or both delays occur (rightmost,

with a chance of 6.5%). This pattern continues until

around 4 delays when it is more likely than not that

one delay will impact every work item and it

becomes the mode position. By 5 delays, the Weibull

shape is clearly forming. The blank spaces between

the peaks of this simulation would be populated with

the uncertainty of the delay times (not all identical)

and the probabilities (not all 25%) in the real world.

Figure 2 – Simulation of the impact of
increasing number of identical delays each

with probability of occurring p=0.25

Although this is a simplistic model, it does help

explain and visualize the process of uncertain work

effort and delays that are un-related to the work item.

For example, often these delays are staffing related.

Work items stall awaiting a specialist staff skill to

become free. Or system related, where work items

are stalled waiting for a test environment to free up,

or waiting for another team to deliver a dependent

piece of work. These delays have little to do with the

work item task at hand, they are just bad luck for

some work items and not others. The combination of

just a few of these delays impacting some work items

but not others causes the asymmetry. It’s unlikely

that every delay factor hits a given work item. It’s

unlikely no delays hit an individual work item. There

will most often be a mix of a few delays.

The exact percentage likelihood of each risk

cannot be accurately estimated in advance, but can be

measured historically. Analysis of these probabilities

and impact should drive process selection decisions

and budget to solve the most common and impacting

delays. Heuristics to isolate the most impacting

delays is a vibrant area of commercial interest.

3.2.3. Historical observed cycle-time reduction. A

supporting factor that Weibull may be the correct

distribution for cycle-time is its consistent prevalence

over the last 40 years. The distribution shape

common in the 1970’s was wider (larger shape

parameter), but it is also common in 2014 with a

narrower shape. The hypothesis of this paper is that

process improvements are correlated to the Weibull

distributions shape parameter.

During the 1970’s to 90’s a general development

process called Waterfall was common. The

characteristics of this development pattern were up-

front design, followed by coding, followed by testing.

Projects were inhibited from exiting one phase until

the prior phase was completed. This was the era

Norden [1], Putnam [2] and Kan [3] documented the

Rayleigh distribution. They showed empirical

evidence this was the case during projects they

oversaw during that era. Figure 3 shows a density

function for the Rayleigh distribution. Rayleigh is

part of the Weibull family, with its specific

characteristic being a shape parameter is 2.0.

Agile methodologies (XP, Scrum, Kanban)

became prevalent in the late 1990’s to the current

time. For these processes the Weibull distribution

moves left and narrows. The Weibull shape

parameter is decreasing. Figure 4 shows a Weibull

distribution with a shape parameter of 1.5, in the

center of the 1.3 to 1.6 range seen in available cycle-

time analysis by the author. Further research is

needed to confirm other sources see similar results.

Figure 3 – Rayleigh Distribution (shape = 2.0)

Figure 4 – Weibull Distribution (shape = 1.5)

 Figure 5 – Weibull Distribution (shape = 1.0)

The lowest limit seen in commercial practice,

nears an Exponential distribution as shown in Figure

5. The Exponential distribution is of the Weibull

family, its shape parameter being 1.0. It has been

seen on teams that have few or no external

dependencies and the work performed is mostly

repetitive. Operations teams and teams responsible

for releasing code to production. The hypothesis is

that these teams experience few or no external delays,

and work have little inventiveness. This is consistent

with the simulation in Figure 2. With none, one or

two delays resulting in a distribution with a left

mode, and generally more exponentially distributed.

It’s likely that for these teams measuring in hours or

minutes will zoom in on the leading edge of the

Weibull that is invisible at the day granularity for

cycle-times. Teams in this area have often laser

focused on eradicating delays and queuing time using

principles from the Lean manufacturing world

(reducing WIP, eliminating waste, etc.). Kanban

1970-1990’s

(Waterfall process)

~2000 -

(Agile processes)

~2010 -

(Lean processes)

teams have been observed approaching this ideal

when in a predominately operational capacity.

The narrowing of the shape parameter has

important impacts on the variability of forecasting

using cycle-time data. Teams with a lower shape

parameter (narrower curve) have less variance, and

will be able to forecast and promise with higher

certainty (relative to the unit they estimate in). The

hypothesis is that some iterative practices or Agile

techniques are reducing the shape parameter due to

iterative delivery (cycle-times are lower), and that

other Agile practices are decreasing the shape

parameter by eliminating uncertainty. The ability to

put a dollar figure on this reduction of cycle-time and

less uncertainty is paramount to justifying the

expense of implementing any change in agile

practice.

3.3. Implications of Weibull Distributed

Cycle-times

3.3.1. Errors in control chart control limits. The

most visible implication of non-Gaussian cycle-time

distribution is the setting of service level agreements

(the time development organizations promise to

deliver within) or other control limits. Shewart [7, 8]

and Deming [9, 10] introduce and discuss the use of

control charts to maintain quality and determine

when intervention in a process is needed (beyond

normal variation). One popular chart is Shewart’s

control chart, a scatterplot with horizontal upper and

lower bounds statistically calculated. When samples

from production move beyond these limits, action is

warranted. Traditional calculations for these limits

assume normality which is correct for general

repetitive manufacturing, but not software

development cycle-times as shown. The computed

control limits shown in graphs within almost all

commercial task management systems is incorrect for

cycle-time. Teams are being held to a service levels

that are erroneous.

To demonstrate the impact of this error on team

expectations, random numbers were generated for a

Weibull distribution with a shape parameter (α) of

1.5 and a scale parameter (β) of 30. Table 1 shows

the various results of target intervals computed three

different ways. The Actual Weibull calculation (1) is

based on the Weibull formula and is the correct value

if the data truly conforms to the specified Weibull

parameters (these would be close in our example but

not exact – generating perfect random numbers is

difficult). The next row (2) shows the erroneous

Standard Deviation calculation (when applied to

Weibull data) that adds the Standard Deviation (σ)

the mean (µ), 1, 2 and 3 times. The lower limit

calculations below the mean (subtracting σ from µ)

have been omitted because they go below zero. Some

major commercial tool vendors have plotted the

lower control limit below zero without noticing this

is invalid. Cycle-times cannot go below zero, until

time can be reversed.

Table 1 – Incorrect x(P) on Weibull

(shape k = ~1.5, scale γ = ~30)

 μ + 1σ μ + 2σ μ + 3σ

Target p 0.683 0.954 0.997

(1) Weibull formula

31.342 61.217 94.194

(2) Using StdDev in

Excel
43.686 61.567 79.447

(3) Using Percentile in

Excel
30.819 60.677 96.155

The formula using Standard Deviation (row 2) is

widely incorrect at +1 and +3 sigma (σ). If a team

was expected to perform within a μ + 3σ upper limit,

typical off-the-shelf charting controls (and

Microsoft® Excel) would calculate 79 days as the

target. The actual performance solved using the

Weibull PDF is 94 days. The team would be at a 15

day disadvantage due to poor mathematics.

The alternative is to compute the percentiles

directly, the results shown in row (3). This is a simple

remedy for the issue and acceptable with the

computing power we have today (but didn’t back in

Shewart’s [7,8] time circa 1939 where Standard

Deviation and percentile values were computed using

printed tables, not computers). The formulas used in

the closer approximations seen in Table 1 in

Microsoft Excel are -

=PERCENTILE.INC([cycle-time data], 0.683)

=PERCENTILE.INC([cycle-time data], 0.954)

=PERCENTILE.INC([cycle-time data], 0.997)

3.3.2. Process decision implications. Figure 2

presented a simple model showing the impact of

delays on delivery time. The uncertainty of time it

would take to create the work items with no delays

quickly shifts to the right. Depending on the final

width of cycle-time Weibull distribution (its shape

parameter) and its stretch (its scale parameter),

different process decisions might be appropriate.

The first step required to give this advice is

determining what the actual shape and scale

parameter are given historical cycle-time data. Many

commercial packages exist to estimate the Weibull

shape and scale parameters from a set of samples

(Easyfit, CrystalBall, @Risk are common). R [6] is a

freely available statistical application and has

libraries that will estimate the best fit parameters as

shown in Listing 1.

R code:

require(MASS)

fit<-fitdistr([data frame],"weibull")$estimate

fit

Output:

 shape scale

1.243665 9.828095

Listing 1 – R Code to estimate Weibull
parameters from historical samples

Having determined the shape and scale

parameters, likely traits and process advice can be

broadly stated. For example, higher shape parameters

are indicative of teams being impacted by more

delays, and for longer (as seen in Figure 2, more

delays the more the fatter the distribution). External

team dependencies have been commonly seen as a

major root cause for these teams. Teams with low

shape parameter values approaching 1.0 with low

scale parameters do many smaller items fast. This is

typical of operations and support teams who

undertake critical, but repetitive work. Automating

the repetitive and critical tasks is prudent for these

teams. Figure 7 shows some high level traits and

process advice based on a matrix of shape and scale

parameters. Advice is very contextual, and this isn’t

an exhaustive list. Further research and confirmation

is needed.

Figure 7 – Suggesting process advice based on

Weibull Scale and Shape parameters.

In theory, the shape parameter of the Weibull

should not be < 1.0 in the software development

estimation context. In software development, there

seems to be good logic expressing that the longer a

work item remains incomplete the more likely they

are to stay that way. Once a work item has been

impeded and the team takes on other work whilst

waiting, pressure and focus is on the new work.

Based on the Hazard function of the Weibull

distribution (related to Survival analysis), shape

parameters < 1.0 would be at increasing Hazard

(reverse logic for completion, hazard in this case is

work finishing). Work items would have a higher

chance of being completed the longer they are

impeded. Stories of this occurring in real teams seem

rare. Not impossible and future work will attempt to

investigate this issue further to see what process

circumstances might cause this.

4. Software process impact modelling

Having established that software development

practices shape the variability of cycle-time,

computing a likely impact of this cycle-time in

financial terms can provide evidence when process

change is prudent. The first step is to model software

projects using cycle-time to forecast a baseline

delivery date of a prior project that matches what

occurred (actual delivery).

Modeling a prior software project using cycle

time requires the following data –

1. The known start date of the project.

2. The known end-date of the project.

3. The number of work-items delivered.

4. The cycle-time values for each work-item.

Inputs 1 and 2 are known based on team

knowledge, and inputs 3 and 4 are obtained from the

electronic tracking system used by the organization.

The cycle-times samples are checked for obvious

erroneous outliers, and that they follow a Weibull

distribution for data quality confidence.

Figure 8 shows the basic process for generating a

probabilistic forecast based on the historical cycle

times. The goal is given the known start date, tune

the model so that a given confidence level (0.85 is

common) forecasted release date matches the known

actual release. The forecast we produce will be

elapsed days, and this target is calculated as the

number of days between actual release and actual

start using the logic –

(3) Target forecast days =

 Known actual release date – Known start release date

Cycle-time samples are combined with the known

amount of work completed using the Monte Carlo

process described in Figure 8. Random samples of

historical cycle-time are bootstrapped (sampled with

replacement) as described by Efron and Tibshirani,

1994 [11]. Sets of these samples the same size as the

completed work-item count are summed. This is

repeated many times, often thousands of trials. Some

trials happen to randomly choose all lower numbers

from the samples, other trials get all higher values,

but mostly a mix of values. By analyzing the results,

probability of any one outcome can be computed by

the percentage of trials that were equal to or less the

desired value.

Figure 8 – Cycle-time Monte Carlo process

for forecasting project completion

More than one work item was in-progress at a

time, and this is modeled by dividing the total

summed cycle-times in each trial by an average

amount of parallel effort. Average parallel work

effort is computed experimentally by increasing or

decreasing an initial guess until the forecasted

number of days to complete matches that of formula

(3) Target forecast days at a given certainty (0.85

common). The certainty is the value at the 85th

percentile value of all trials after being divided by the

parallel effort.

The results shown in this paper were computed

using a commercial Monte Carlo simulation tool,

KanbanSim and ScrumSim by Focused Objective

[12]. Figure 9 shows a typical result table. The

advantage of this tool is it correctly computes

calendar dates from elapsed days, and can compute

the cost of delay based on missing target dates. The

process it employs is no more complex that described

in this paper.

Figure 9 – Sample result for baseline Monte

Carlo simulation using cycle-time

4.1. Hypothetical cycle-time reduction impact

Calculating the impact of reducing cycle-time by a

fixed percentage is easy once a baseline model has

been produced. Cycle-time samples are discounted at

fixed percentage when randomly sampled in a trial.

For example, multiplying each sample by 0.9

simulates a 10% decrease in cycle-time across the

board. Forecasts using the discounted cycle-time

show an earlier delivery date and the value of this

earlier release calculated (lower development cost

plus extra revenue).

Table 2 shows the cash flow impact when cycle-

time samples were reduced by 10% and 20%. An

updated forecast release date was used to calculate a

cost saving (development expenses) and additional

revenue forecast based on being earlier to market.

The total cash-flow benefit shown is based on

financial revenue predictions obtained from the

financial team. The baseline shows some revenue

was made but the project missed a seasonal window

and paid dearly. Even small percentage decreases in

cycle-time can make a big cash-flow impact.

Table 2 – Example cash flow Improvement
Cycle

Time

Forecast

Date

Forecast

Cost

Cash flow Benefit

(cost savings + FY revenue)

Current 15-Jul 1000K $0 + $60K = $60K 0%

10%

Decrease
27-May 912K

$87K+ $90K =

$177K

296%

Better

20%
Decrease

4-Apr 820K
$120K + $145K =

$265K
442%
Better

5. Case study: Process Economic Impact

A large commercial client (approximately 200 staff in

the division analyzed) wanted to calculate the impact

of a recently introduced process change. Although

the IT department felt that a newly introduced

process considerably improved completed work

throughput, there was some healthy skepticism within

the financial controllers who glibly stated “show us

the money.”

The initial question to answer is “did the process

change make any impact at all?” If so, how much? To

answer these questions, a baseline model for a prior

project (called prior in this paper) and test project

(called test in this paper) were built using the process

described in section 4. These models were tuned as

described in section 4 to accurately match the known

outcomes.

Having a baseline for the prior and test project

with forecasts, the cycle-time samples were swapped

between the models. Prior samples were modeled in

the test project, and the test project’s cycle-times

were used in the prior project. New forecasts were

produced giving new hypothetical forecasts if the

new process was used in the prior, or the old process

was used in the test. Figure 10 shows the general

process for tuning against actual dates then swapping

cycle-time histories to get the modeled outcomes.

Figure 10 – Process for modeling known and

modeled (hypothetical) forecasts

This straight swap was appropriate in this context

because teams were stable and the prior and test

projects were similar in complexity. This was

confirmed by looking at the work-item count and

effort for features delivered in both. If the teams or

projects were significantly different, then this

analysis would be erroneous.

Testing the impact of the new process on the prior

project demonstrated the results in Table 2. With the

new cycle-time history bought about by process

change, there would have been an almost 4 month

(110 day) improvement in delivery time, with the

reduced staff carrying cost alone saving $4M. It was

decided that the impact of being on the market earlier

in gained revenue was hard to estimate, so it was

omitted. This means that the outcomes seen

understate the losses. They do not account for cost of

delay on the projects delivered late, or the cost of

delay for the next project that was delayed. Staff

carrying cost was calculated as the per day cost of the

teams implementing the project. The calculation was

simply the yearly IT budget divided by 365 days.

Table 2 – Impact if new process WAS

used in the prior project

Process Target Delivered Cost

Old

(actual)

1-Dec 1-Mar

+90 days

$18M

New

(modeled)

1-Dec 11-Nov

-20 days

$14M

-$4M

The second part of the analysis was to estimate

the outcome if the new process wasn’t implemented

for the test project. The cycle-times for the prior

project were used in the model for the test project.

The outcome is shown in Table 3. The new process

saved at least $1.4M, again only accounting for staff

carrying cost.

Table 3 – Impact if new process WASN’T

used in the test project

Process Target Delivered Cost

Old

(modeled)

31-Dec 5-Feb

+36 days

$8M

+$1.4M

New

(actual)

31-Dec 31-Dec

On-time

$6.6M

The combined message to the executive teams

was that if the new process was in place for the prior

project -

a. Delivered on-time rather than 3 months late

b. $4M decrease in development budget

And if the new process wasn’t implemented for the

test project -

a. Test project delivered 1 Month late

b. Increase of $1.4M development budget

Due to the compelling nature of these forecasts

even if halved, the decision to fund and roll-out the

new process to the entire organization was happily

accepted by all financial and IT staff.

The ability to quickly model the financial impact

using the cycle-time data on-hand was central to

gaining executive sponsorship in the process change

initiatives. Three years after this analysis, the teams

in question still model, assess viability and measure

resulting impact of all process changes.

Confidential data available on request.

6. Conclusion

This paper has outlined a method for calculating

the financial impact of software development process

change. Practitioners can choose to predict likely

impact before a change is implemented, and/or assess

its impact post change process implementation.

The software industry has a history of

documented use of Rayleigh and Weibull

distributions for various problems. Prior examples

exist for predicting remaining defects in the field and

staff capacity planning. This paper continues the

Weibull tradition with a theory of why cycle-time for

software development follows this distribution within

a narrow range of parameter values. This paper

provides new sources of evidence in support of this

claim –

1. Theory of why Weibull distribution is the

outcome of the typical process constraints

seen in software development.

2. The Weibull shape parameter can be seen to

correlate with progressive process changes

over forty years.

Knowing cycle-time follows the Weibull

distribution allows informed decisions to be made in

risk mitigation and process change decisions. This

paper makes the following advice –

1. Calculations on cycle-time data should not

assume a Normal Distribution. This is

evident in commercial tooling vendors who

show erroneous confidence level limits on

control charts.

2. Agile processes has compressed the shape

and scale of the cycle-time distribution,

decreasing its variability.

3. Computing the shape and scale parameters of

the cycle-time distribution allows informed

process recommendations.

Probabilistic modelling allows financial impact of

process change to be estimated. Monte Carlo

modeling using captured cycle-time samples and

known project outcomes allows simple what-if

experiments based on hypothetical cycle-time

improvements. This is a rapid way to quantitatively

determine economic outcome.

The commercial case study shown in this paper

demonstrates how quickly a financial argument can

be made for the continually challenging the current

process and investing in improvements. The payback

is rapid.

7. References

[1] Norden, P V, Useful Tools for Project Management

Research, Operations Research in Research and

Development, John Wiley and Sons, NY, 1963

[2] Putnam, L H, and W. Myers, Measures for Excellence:

Reliable Software on Time, Within Budget, Yourdon Press,

Englewood Cliffs, NJ, 1992

[3] Kan, Stephen H, Metrics and Models in Software

Quality Engineering – 2nd Edition, Addison Wesley, Upper

Saddle River, NJ, 2002

[4] McCombs, Edward L.; Elam, Matthew E.; and Pratt,

David B. (2009) "Estimating Task Duration in PERT using

the Weibull Probability Distribution,"Journal of Modern

Applied Statistical Methods: Vol. 8: Iss. 1, Article 26.

Available

at:http://digitalcommons.wayne.edu/jmasm/vol8/iss1/26

[5] Fente, J., Schexnayder, C., & Knutson, K. (2000).

Defining a probability distribution function for construction

simulation. Journal of Construction Engineering and

Management, 123(3), 234-241.

[6] R Core Team (2014). R: A language and environment

for statistical computing. R Foundation for Statistical

Computing, Vienna, Austria. URL http://www.R-

project.org/.

[7] Shewhart, W. A. (1931). Economic Control of Quality

of Manufactured Product.

[8] Shewhart, W. A. (1939). Statistical Method from the

Viewpoint of Quality Control

[9] Deming, W. E. (1975). "On probability as a basis for

action". The American Statistician 29 (4): 146–152.

[10] Deming, W. E. (1982). Out of the Crisis: Quality,

Productivity and Competitive Position.

[11] Efron, B., & Tibshirani, R. J. (1994). An introduction

to the bootstrap (Vol. 57). CRC press.

[12] KanbanSim and ScrumSim, A software environment

for modeling and forecasting agile software development

projects. Focused Objective LLC. Seattle, USA. URL

http://www.focusedobjective.com

[13] Magennis, Troy (2012) “Managing Software

Development Risk using Modeling and Monte Carlo

Simulation”. Lean Software and Systems 2012

Proceedings: 32–52. url: http://leanssc.org/files/2012-

LSSC-Proceedings.pdf

[14] Acemoglu, Daron & Gancia , Gino & Zilibotti ,

Fabrizio, “Competing engines of growth: Innovation and

standardization.” Journal of Economic Theory 147 (2012)

570–601.

http://www.focusedobjective.com/

