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Abstract 
IT executives initiate software development 

process methodology change with faith that it will 

lower development cost, decrease time-to-market and 

increase quality. Anecdotes and success stories from 

agile practitioners and vendors provide evidence that 

other companies have succeeded following a newly 

chosen doctrine. Quantitative evidence is scarcer 

than these stories, and when available, often 

unverifiable.  

This paper introduces a quantitative approach to 

assess software process methodology change. It 

proposes working from the perspective of impact on 

cycle-time performance (the time from the start of 

individual pieces of work until their completion), 

before and after a process change.  

This paper introduces the history and theoretical 

basis of this analysis, and then presents a commercial 

case study. The case study demonstrates how the 

economic value of a process change initiative was 

quantified to understand success and payoff. 

Cycle-time is a convenient metric for comparing 

proposed and ongoing process improvement due to 

its easy capture and applicability to all processes. 

Poor cycle-time analysis can lead to teams being 

held to erroneous service level expectations. Properly 

comparing the impact of proposed process change 

scenarios, modeled using historical or estimated 

cycle-time performance helps isolate the bottom line 

impact of process changes with quantitative rigor.  

 

1. Introduction  

 
Company IT leadership often initiate software 

development process improvements due to dis-

satisfaction with time to market and development 

cost. Leaders responsible for product direction have 

many ideas, but feel these ideas take too long to make 

it into their customers’ hands. These leaders get 

frustrated that competitors are (or appear) faster to 

market than their organization, and look for ways to 

compete more equitably. 

Process change proponents and vendors offer a 

variety of the latest tools, books, training, and 

certification as immediate relief to the vague “too 

slow” and “too costly” symptoms. XP, Agile, Lean, 

Scrum, and Kanban are some of the well-known 

processes that have risen to the top of the popularity 

charts, each with case studies (often just one) 

showing great impact when applied correctly by the 

inventors. The final choice appears to fall on faith 

based lines, with many organizations moving from 

one process to the next in search of nirvana. A 

quantitative framework for estimating and assessing 

true impact is needed for informed decisions. 

Measuring the quantitative impact of a software 

development process change is hard. Measurable 

change takes weeks or months to evolve, and there is 

little in the way of control group – change is 

implemented and the outcome if that change wasn’t 

performed isn’t an interesting or easily discernable 

metric. This paper presents one technique for 

quantitatively estimating the potential economic 

outcomes both before and after a change has been 

implemented.  

The basis for the method described here is 

probabilistically simulating the impact of changes in 

cycle-time samples from a prior project to a 

completed project using new methodology. To 

estimate the potential payoff for a new process, 

existing cycle-time samples can be discounted by 

fixed percentage amount to simulate the financial 

return for hypothetical reductions (10%, 25%, for 

example). Once change has occurred, actual results 

can be compared to the predicted data to validate the 

difference and improve modeling efforts on future 

initiatives. 

This paper also looks at the impact of process 

change on cycle-time over the last 40 years to 

determine if there is a pattern. Understanding the 

forces at work causing changes in cycle-time 

distribution data throughout process improvement 

over this time hints at what management strategies 

will give the biggest return on investment. This 

knowledge helps choose the contextually correct 

process strategy in a compelling and confident way. 

The goal of this paper is two-fold: 

1. Discuss the cycle-time distribution patterns 

and parameters for different known software 

development processes. 

2. Demonstrate the use of cycle-time data as a 

comparative tool for calculating potential and 

actual economic benefit of process change. 



2. Structure of this paper  

 
This paper consists of three major sections – 

 

1. Cycle-time distribution analysis, and how 

development process can manipulate the 

shape and uncertainty of this distribution 

2. Probabilistic modelling of software processes 

using cycle-time for delivery estimate and 

how to formulate an economic model for 

process change. 

3. Case study: Practical application of cycle-

time analysis as presented in an economic 

benefit project for an industry client. 

   

The first part of this paper introduces cycle-time 

in software development processes and develops the 

theory behind why cycle-time value distribution 

consistently follows very similar patterns across 

teams and organizations.  

The second part of this paper shows how through 

statistical modelling, the likely improvement of 

process changes can be simulated and an economic 

argument used to justify the effort of process change. 

The third section will demonstrate and show the 

application of a cycle-time comparative technique 

used in industry. 

 

3. Cycle-time distribution analysis  

 
3.1. Defining cycle-time 

  
Cycle-time is defined as the time between starting 

date and completion date of work items. In software 

development this is most often measured in days, but 

can be in hours for teams with small work items that 

are started and completed in the same day. This paper 

always presents cycle-times in days. 

No consistent definition of work item “start” and 

“complete” has emerged as standard in IT process. 

Definition often differs between departments and 

teams within an organization. For the purposes of this 

paper, any consistently defined start and complete 

date is acceptable as long as it is consistently applied 

when capturing cycle-time data. Cycle-time is a good 

candidate metric for prediction and comparison 

because it is an elapsed time measurement that is not 

measured in abstract units (such as function points, 

story points and velocity – common in agile).  

Increasingly, electronic tools are used to manage 

the software development process and automatic 

capture of cycle-time data is common-place. The 

richness of this data hasn’t been surfaced beyond 

scatter plots and for some tools a histogram as eye 

candy. This paper describes how this data can be 

leveraged for predictive purposes.  

If no policy and/or process is currently in place 

for capturing cycle-time data then the following 

guidance is offered. These are also the definitions 

used in this paper -  

 

1. Capture the date that work items are first 

created as an idea. This data is useful for 

understanding if there is a decrease in “first 

idea” to customer delivery. This will be 

referred to as Created Date in this paper. 

2. Capture the date that work items are 

prioritized for work to begin. This is the date 

that a company has committed to delivering 

the work item, or has to put “effort” into 

creating the intended result from the work 

item. This will be referred to as Started Date 

in this paper. 

3. Capture the date work is ready for delivery to 

a customer. This is referred to as Completed 

Date in this paper. 

4. Capture the date work items are first exposed 

to customers in a usable way. This is referred 

to as In Production Date in this paper. 

 

Given these definitions of the times, the following 

definitions will be defined in this paper as – 

 

(1) Lead-time = In Production Date – Created Date      

 

(2) Cycle-time = Completed Date – Started Date 

 

Lead-time (1) is defined as the time between 

when work description is created, and that work is 

delivered to production. Cycle-time (2) is defined as 

the time between when hands-on work begins on a 

piece of work until it is considered complete.  

  This paper focuses on cycle-time in its examples 

and case study. It is feasible, and likely that the same 

factors of probability distribution are at play at a 

lead-time level and this will be the subject of future 

work. 

 

3.2. Cycle-time probability distribution 
 

3.2.1. Analysis of industry data. Norden [1] in 

1963, then Putnam and Myers [2] in 1978 empirically 

established that software projects follow a Rayleigh 

density distribution in staffing estimation and effort. 

Kan [3] in 2002 extended the use of the Rayleigh 

model to include defect removal rate and remaining 

defect prediction. The Rayleigh distribution is a 

specific form of the Weibull distribution (shape 

parameter of 2.0), and this paper proposes that cycle-



time follows the Weibull probability distribution with 

lower shape parameters from 1.0 to 1.6 depending on 

process and inter-team dependency factors. 

Cycle-time histograms obtained during many 

commercial client engagements established the 

prevalence of left-skewed density distributions. The 

lack of this pattern in software development cycle-

time is often an indicator of poor data capture. 

Although it is not essential to know the exact 

distribution curve for modelling an existing process 

when actual data samples can be used when 

simulating [13], curiosity drove my initial attempts to 

determine what distribution and why. Candidate 

probability distributions are Gamma, Weibull, 

Rayleigh and Log-Normal as shown in Figure 1 fitted 

to a typical agile team in a commercial context.   

 

 
Figure 1 – Potential probability distribution 
fits against a typical commercial data-set 

 

When faced with multiple potential correct 

distributions fitting historical data, the “safest” is 

chosen. For forecasting dates, longer is safer – if a 

project is valid delivering later, then it is likely still a 

valid investment delivered early. The Weibull 

distribution is the wiser choice having a heavier tail, 

meaning the decay in higher values is at a slower rate 

(higher values have higher probability) when 

compared against Log-Normal. It also proved a 

successful candidate when used as an initial estimate 

on prior commercial projects.  

Written evidence suggesting Weibull is 

appropriate for modeling similar problems was found 

by Fente, Schexnayder, and Knutson [5] who 

describe Weibull as a good candidate for modeling 

construction and engineering. And McCombs, Elam 

and Pratt [4] chose Weibull as most appropriate for 

modeling task durations in PERT analysis. 

McCombs et al [4] and Fente et al [5], outlined 

the desirable attributes of an acceptable distribution 

for modeling task durations -   

 

1. It is continuous.  

2. It has finite endpoints. 

3. It has a defined mode between its endpoints. 

4. It is capable of describing both skewed and 

symmetric activity time distributions. 

 

The Weibull distribution is a good choice for all 

but point 2 - finite endpoints. It could be argued that 

this isn’t a necessarily desirable attribute for a cycle-

time distribution; Long delays of very low likelihood 

occur in the real software development world. 

Extremely large values have even extremely small 

probabilities, and when used in a probabilistic 

prediction, their influence should they occur is 

minimal. McCombs et al [4] noted that although not a 

mathematical property of the Weibull distribution, 

commercial practicalities eliminate (ridiculously 

long) non-finite endpoints. Tasks taking far longer 

than anticipated will more often be identified and 

solved with resourcing and attention of causes.  

Fitting actual commercial data and finding 

confirming prior research increases confidence that 

Weibull distribution is the most likely candidate. 

Confirming this with a plausible simulation of a 

typical real world software development process is 

valuable to understand limitations, ramifications and 

potential utilization.    

 

3.2.2. Process factors causing skewed distribution. 
The software development process involves taking a 

description of ideas and creating a manifestation of 

those ideas in working computer code. Large ideas 

are meticulously broken down into smaller ideas, and 

implemented incrementally. Each work item builds 

on the previously completed computer code.  

XP, Scrum, Kanban, and Agile, all decompose 

work items into smaller batches of work for delivery, 

but differ in approach. These batches of work go by 

various names: user stories, cards and work items are 

commonly used (this paper always uses the name 

work items for no reason other than consistency). 

Work items pass through a variety of steps from 

idea to solution. Although it is simple to think of a 

software development process like a factory 

production line where work follows a pre-defined 

step-by-step process. The key difference is that every 

work item is different in a functional way from the 

others. Each work item is solving a different 

problem. Rather than building many of the same 

things as in factory production, software development 

is building consecutive one offs. Efforts to model 

software development in similar ways to traditional 

manufacturing production line thinking fails to 

embrace this key difference.  

Traditional repetitive manufacturing process cycle 

times will lead to a Gaussian response. Work-items 

flow through fixed sequence of assembly with some 
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bounded variance. This process yields a Normal 

distribution due to the Central Limit Theorem.  

This expected Gaussian result is engrained in 

quality management practices. Shewart [7, 8] and 

Demming [9, 10] make good use of anticipated 

Normal distribution in manufacturing for statistically 

managing quality. For example, work output is 

closely monitored for process deviation, often 

through policy to keep variability within certain 

ranges of sigma (standard deviation) through 

standardization. 

Driving for standardization in creative pursuits 

often leads to erosion of quality and inventiveness as 

teams strive to meet the pre-set control limits at great 

effort and at any cost. Acemoglu et al [14] study this 

tension between standardization and innovation. For 

work that is constant innovation, cycle-time for each 

work item will be inherently variable and unlikely to 

form a Normal distribution pattern.  

Software development process has the following 

traits that set it apart from standard manufacturing 

process and need to be modelled specifically –  

 

1. Work items follow one of many possible 

sequential process, not one fixed process for 

all items. Some work items skip entire steps. 

2. The effort for each process step is different 

for each work item. Some harder, some easier 

due to the amount of new and known 

concepts. 

3. The delays each work item might encounter 

are different and often unrelated to the work 

item itself (key person on vacation, awaiting 

another item to finish). 

4. Completing some work items identifies new 

work. Missed requirements, un-identified 

complexity and defects are examples. 

5. The uncertainty of effort and delays of each 

work item means that the system 

continuously operates in an unstable state, 

where constraints move, emerge and resolve. 

 

To simulate the simplest process that causes 

asymmetry in cycle-time, a simple Monte Carlo 

model can be built. This model explains how initially 

known work and a combination of potential, but not 

guaranteed delays probabilistically convolve into a 

Weibull distribution. 

The hypothetical model simulates a fixed amount 

of work-items being constructed with some uniform 

variance. Impacting their on-time completion is the 

possibility of 1 to 5 delays occurring, each with a 

25% chance of occurrence. These delays are 

simulated as an amount of extra work if they occur, 

or have no impact if they don’t occur. Delays in 

software are a combination of waiting time and 

discovered work, but this model simply increases 

work item time by adding work. 

 Figure 2 shows the result as delays are added in 

Histogram form. The Y-Axis is count (probability), 

and the X-Axis is time (earlier to the left, later to the 

right). Peaks emerge and mix based on the binary 

permutations of none, some and all delays occurring.  

When there are no delays, the result is a Normal 

distribution (or would be if modelled with more 

cycles). When the first delay is added, 75% of the 

outcomes remain un-affected, and 25% incur the 

delay as our binomial logic would suggest. When two 

delays occur, there are now 3 possible peaks: no 

delays occur (left-most), one or the other delay 

occurs (middle), or both delays occur (rightmost, 

with a chance of 6.5%). This pattern continues until 

around 4 delays when it is more likely than not that 

one delay will impact every work item and it 

becomes the mode position. By 5 delays, the Weibull 

shape is clearly forming. The blank spaces between 

the peaks of this simulation would be populated with 

the uncertainty of the delay times (not all identical) 

and the probabilities (not all 25%) in the real world.  

 

  
                             

  
 

  
 

Figure 2 – Simulation of the impact of 
increasing number of identical delays each 

with probability of occurring p=0.25 



Although this is a simplistic model, it does help 

explain and visualize the process of uncertain work 

effort and delays that are un-related to the work item. 

For example, often these delays are staffing related. 

Work items stall awaiting a specialist staff skill to 

become free. Or system related, where work items 

are stalled waiting for a test environment to free up, 

or waiting for another team to deliver a dependent 

piece of work. These delays have little to do with the 

work item task at hand, they are just bad luck for 

some work items and not others. The combination of 

just a few of these delays impacting some work items 

but not others causes the asymmetry. It’s unlikely 

that every delay factor hits a given work item. It’s 

unlikely no delays hit an individual work item. There 

will most often be a mix of a few delays.    

The exact percentage likelihood of each risk 

cannot be accurately estimated in advance, but can be 

measured historically. Analysis of these probabilities 

and impact should drive process selection decisions 

and budget to solve the most common and impacting 

delays. Heuristics to isolate the most impacting 

delays is a vibrant area of commercial interest. 

 

3.2.3. Historical observed cycle-time reduction. A 

supporting factor that Weibull may be the correct 

distribution for cycle-time is its consistent prevalence 

over the last 40 years. The distribution shape 

common in the 1970’s was wider (larger shape 

parameter), but it is also common in 2014 with a 

narrower shape. The hypothesis of this paper is that 

process improvements are correlated to the Weibull 

distributions shape parameter. 

During the 1970’s to 90’s a general development 

process called Waterfall was common. The 

characteristics of this development pattern were up-

front design, followed by coding, followed by testing. 

Projects were inhibited from exiting one phase until 

the prior phase was completed. This was the era 

Norden [1], Putnam [2] and Kan [3] documented the 

Rayleigh distribution. They showed empirical 

evidence this was the case during projects they 

oversaw during that era. Figure 3 shows a density 

function for the Rayleigh distribution. Rayleigh is 

part of the Weibull family, with its specific 

characteristic being a shape parameter is 2.0.  

Agile methodologies (XP, Scrum, Kanban) 

became prevalent in the late 1990’s to the current 

time. For these processes the Weibull distribution 

moves left and narrows. The Weibull shape 

parameter is decreasing. Figure 4 shows a Weibull 

distribution with a shape parameter of 1.5, in the 

center of the 1.3 to 1.6 range seen in available cycle-

time analysis by the author. Further research is 

needed to confirm other sources see similar results.  

 
Figure 3 – Rayleigh Distribution (shape = 2.0) 

 

 
Figure 4 – Weibull Distribution (shape = 1.5) 

 

 Figure 5 – Weibull Distribution (shape = 1.0) 
 

The lowest limit seen in commercial practice, 

nears an Exponential distribution as shown in Figure 

5. The Exponential distribution is of the Weibull 

family, its shape parameter being 1.0. It has been 

seen on teams that have few or no external 

dependencies and the work performed is mostly 

repetitive. Operations teams and teams responsible 

for releasing code to production. The hypothesis is 

that these teams experience few or no external delays, 

and work have little inventiveness. This is consistent 

with the simulation in Figure 2. With none, one or 

two delays resulting in a distribution with a left 

mode, and generally more exponentially distributed. 

It’s likely that for these teams measuring in hours or 

minutes will zoom in on the leading edge of the 

Weibull that is invisible at the day granularity for 

cycle-times. Teams in this area have often laser 

focused on eradicating delays and queuing time using 

principles from the Lean manufacturing world 

(reducing WIP, eliminating waste, etc.). Kanban 

1970-1990’s 

(Waterfall process) 

~2000 -  

(Agile processes) 

~2010 -  

(Lean processes) 



teams have been observed approaching this ideal 

when in a predominately operational capacity. 

The narrowing of the shape parameter has 

important impacts on the variability of forecasting 

using cycle-time data. Teams with a lower shape 

parameter (narrower curve) have less variance, and 

will be able to forecast and promise with higher 

certainty (relative to the unit they estimate in). The 

hypothesis is that some iterative practices or Agile 

techniques are reducing the shape parameter due to 

iterative delivery (cycle-times are lower), and that 

other Agile practices are decreasing the shape 

parameter by eliminating uncertainty. The ability to 

put a dollar figure on this reduction of cycle-time and 

less uncertainty is paramount to justifying the 

expense of implementing any change in agile 

practice. 

 

3.3. Implications of Weibull Distributed 

Cycle-times 
 

3.3.1. Errors in control chart control limits. The 

most visible implication of non-Gaussian cycle-time 

distribution is the setting of service level agreements 

(the time development organizations promise to 

deliver within) or other control limits. Shewart [7, 8] 

and Deming [9, 10] introduce and discuss the use of 

control charts to maintain quality and determine 

when intervention in a process is needed (beyond 

normal variation). One popular chart is Shewart’s 

control chart, a scatterplot with horizontal upper and 

lower bounds statistically calculated. When samples 

from production move beyond these limits, action is 

warranted. Traditional calculations for these limits 

assume normality which is correct for general 

repetitive manufacturing, but not software 

development cycle-times as shown. The computed 

control limits shown in graphs within almost all 

commercial task management systems is incorrect for 

cycle-time. Teams are being held to a service levels 

that are erroneous.  

To demonstrate the impact of this error on team 

expectations, random numbers were generated for a 

Weibull distribution with a shape parameter (α) of 

1.5 and a scale parameter (β) of 30. Table 1 shows 

the various results of target intervals computed three 

different ways. The Actual Weibull calculation (1) is 

based on the Weibull formula and is the correct value 

if the data truly conforms to the specified Weibull 

parameters (these would be close in our example but 

not exact – generating perfect random numbers is 

difficult). The next row (2) shows the erroneous 

Standard Deviation calculation (when applied to 

Weibull data) that adds the Standard Deviation (σ) 

the mean (µ), 1, 2 and 3 times. The lower limit 

calculations below the mean (subtracting σ from µ) 

have been omitted because they go below zero. Some 

major commercial tool vendors have plotted the 

lower control limit below zero without noticing this 

is invalid. Cycle-times cannot go below zero, until 

time can be reversed. 

 

Table 1 – Incorrect x(P) on Weibull  

(shape k = ~1.5, scale γ = ~30) 

 μ + 1σ μ + 2σ μ + 3σ 

Target p 0.683 0.954 0.997 

(1) Weibull formula 

 

31.342 61.217 94.194 

(2) Using StdDev in 

Excel 
43.686 61.567 79.447 

(3) Using Percentile in  

Excel 
30.819 60.677 96.155 

 

The formula using Standard Deviation (row 2) is 

widely incorrect at +1 and +3 sigma (σ). If a team 

was expected to perform within a μ + 3σ upper limit, 

typical off-the-shelf charting controls (and 

Microsoft® Excel) would calculate 79 days as the 

target. The actual performance solved using the 

Weibull PDF is 94 days. The team would be at a 15 

day disadvantage due to poor mathematics.  

The alternative is to compute the percentiles 

directly, the results shown in row (3). This is a simple 

remedy for the issue and acceptable with the 

computing power we have today (but didn’t back in 

Shewart’s [7,8] time circa 1939 where Standard 

Deviation and percentile values were computed using 

printed tables, not computers). The formulas used in 

the closer approximations seen in Table 1 in 

Microsoft Excel are - 

 
=PERCENTILE.INC([cycle-time data], 0.683) 

=PERCENTILE.INC([cycle-time data], 0.954) 

=PERCENTILE.INC([cycle-time data], 0.997) 

 

3.3.2. Process decision implications. Figure 2 

presented a simple model showing the impact of 

delays on delivery time. The uncertainty of time it 

would take to create the work items with no delays 

quickly shifts to the right. Depending on the final 

width of cycle-time Weibull distribution (its shape 

parameter) and its stretch (its scale parameter), 

different process decisions might be appropriate. 

The first step required to give this advice is 

determining what the actual shape and scale 

parameter are given historical cycle-time data. Many 

commercial packages exist to estimate the Weibull 

shape and scale parameters from a set of samples 

(Easyfit, CrystalBall, @Risk are common). R [6] is a 



freely available statistical application and has 

libraries that will estimate the best fit parameters as 

shown in Listing 1.  

 
R code: 

require(MASS) 

fit<-fitdistr([data frame],"weibull")$estimate 

fit  

 

Output: 

   shape    scale  

1.243665 9.828095 

Listing 1 – R Code to estimate Weibull 
parameters from historical samples 

 

Having determined the shape and scale 

parameters, likely traits and process advice can be 

broadly stated. For example, higher shape parameters 

are indicative of teams being impacted by more 

delays, and for longer (as seen in Figure 2, more 

delays the more the fatter the distribution). External 

team dependencies have been commonly seen as a 

major root cause for these teams. Teams with low 

shape parameter values approaching 1.0 with low 

scale parameters do many smaller items fast. This is 

typical of operations and support teams who 

undertake critical, but repetitive work. Automating 

the repetitive and critical tasks is prudent for these 

teams. Figure 7 shows some high level traits and 

process advice based on a matrix of shape and scale 

parameters. Advice is very contextual, and this isn’t 

an exhaustive list. Further research and confirmation 

is needed. 
 

 
Figure 7 – Suggesting process advice based on 

Weibull Scale and Shape parameters. 

   

In theory, the shape parameter of the Weibull 

should not be < 1.0 in the software development 

estimation context. In software development, there 

seems to be good logic expressing that the longer a 

work item remains incomplete the more likely they 

are to stay that way. Once a work item has been 

impeded and the team takes on other work whilst 

waiting, pressure and focus is on the new work. 

Based on the Hazard function of the Weibull 

distribution (related to Survival analysis), shape 

parameters < 1.0 would be at increasing Hazard 

(reverse logic for completion, hazard in this case is 

work finishing). Work items would have a higher 

chance of being completed the longer they are 

impeded. Stories of this occurring in real teams seem 

rare. Not impossible and future work will attempt to 

investigate this issue further to see what process 

circumstances might cause this.  

 

4. Software process impact modelling   
 

Having established that software development 

practices shape the variability of cycle-time, 

computing a likely impact of this cycle-time in 

financial terms can provide evidence when process 

change is prudent. The first step is to model software 

projects using cycle-time to forecast a baseline 

delivery date of a prior project that matches what 

occurred (actual delivery). 

Modeling a prior software project using cycle 

time requires the following data – 

1. The known start date of the project. 

2. The known end-date of the project. 

3. The number of work-items delivered. 

4. The cycle-time values for each work-item. 

 

Inputs 1 and 2 are known based on team 

knowledge, and inputs 3 and 4 are obtained from the 

electronic tracking system used by the organization. 

The cycle-times samples are checked for obvious 

erroneous outliers, and that they follow a Weibull 

distribution for data quality confidence. 

Figure 8 shows the basic process for generating a 

probabilistic forecast based on the historical cycle 

times. The goal is given the known start date, tune 

the model so that a given confidence level (0.85 is 

common) forecasted release date matches the known 

actual release. The forecast we produce will be 

elapsed days, and this target is calculated as the 

number of days between actual release and actual 

start using the logic – 

 
(3) Target forecast days =  

        Known actual release date – Known start release date 

 

Cycle-time samples are combined with the known 

amount of work completed using the Monte Carlo 

process described in Figure 8. Random samples of 



historical cycle-time are bootstrapped (sampled with 

replacement) as described by Efron and Tibshirani, 

1994 [11]. Sets of these samples the same size as the 

completed work-item count are summed. This is 

repeated many times, often thousands of trials. Some 

trials happen to randomly choose all lower numbers 

from the samples, other trials get all higher values, 

but mostly a mix of values. By analyzing the results, 

probability of any one outcome can be computed by 

the percentage of trials that were equal to or less the 

desired value. 

 

 
Figure 8 – Cycle-time Monte Carlo process 

for forecasting project completion 

 
More than one work item was in-progress at a 

time, and this is modeled by dividing the total 

summed cycle-times in each trial by an average 

amount of parallel effort. Average parallel work 

effort is computed experimentally by increasing or 

decreasing an initial guess until the forecasted 

number of days to complete matches that of formula 

(3) Target forecast days at a given certainty (0.85 

common). The certainty is the value at the 85th 

percentile value of all trials after being divided by the 

parallel effort. 

The results shown in this paper were computed 

using a commercial Monte Carlo simulation tool, 

KanbanSim and ScrumSim by Focused Objective 

[12]. Figure 9 shows a typical result table. The 

advantage of this tool is it correctly computes 

calendar dates from elapsed days, and can compute 

the cost of delay based on missing target dates. The 

process it employs is no more complex that described 

in this paper.  

 

 
Figure 9 – Sample result for baseline Monte 

Carlo simulation using cycle-time 
 

4.1. Hypothetical cycle-time reduction impact 

 
Calculating the impact of reducing cycle-time by a 

fixed percentage is easy once a baseline model has 

been produced. Cycle-time samples are discounted at 

fixed percentage when randomly sampled in a trial. 

For example, multiplying each sample by 0.9 

simulates a 10% decrease in cycle-time across the 

board. Forecasts using the discounted cycle-time 

show an earlier delivery date and the value of this 

earlier release calculated (lower development cost 

plus extra revenue).  

Table 2 shows the cash flow impact when cycle-

time samples were reduced by 10% and 20%. An 

updated forecast release date was used to calculate a 

cost saving (development expenses) and additional 

revenue forecast based on being earlier to market. 

The total cash-flow benefit shown is based on 

financial revenue predictions obtained from the 

financial team. The baseline shows some revenue 

was made but the project missed a seasonal window 

and paid dearly. Even small percentage decreases in 

cycle-time can make a big cash-flow impact. 

 

Table 2 – Example cash flow Improvement 
Cycle 

Time 

Forecast 

Date 

Forecast 

Cost 

Cash flow  Benefit 

(cost savings + FY revenue) 

Current 15-Jul 1000K $0 + $60K = $60K 0% 

10% 

Decrease 
27-May 912K 

$87K+ $90K = 

$177K 

296% 

Better 

20% 
Decrease 

4-Apr 820K 
$120K + $145K = 

$265K 
442% 
Better 

 



5. Case study: Process Economic Impact  

   
A large commercial client (approximately 200 staff in 

the division analyzed) wanted to calculate the impact 

of a recently introduced process change.  Although 

the IT department felt that a newly introduced 

process considerably improved completed work 

throughput, there was some healthy skepticism within 

the financial controllers who glibly stated “show us 

the money.”  

The initial question to answer is “did the process 

change make any impact at all?” If so, how much? To 

answer these questions, a baseline model for a prior 

project (called prior in this paper) and test project 

(called test in this paper) were built using the process 

described in section 4. These models were tuned as 

described in section 4 to accurately match the known 

outcomes.  

Having a baseline for the prior and test project 

with forecasts, the cycle-time samples were swapped 

between the models. Prior samples were modeled in 

the test project, and the test project’s cycle-times 

were used in the prior project. New forecasts were 

produced giving new hypothetical forecasts if the 

new process was used in the prior, or the old process 

was used in the test. Figure 10 shows the general 

process for tuning against actual dates then swapping 

cycle-time histories to get the modeled outcomes. 

 

 
Figure 10 – Process for modeling known and 

modeled (hypothetical) forecasts 
 

This straight swap was appropriate in this context 

because teams were stable and the prior and test 

projects were similar in complexity. This was 

confirmed by looking at the work-item count and 

effort for features delivered in both. If the teams or 

projects were significantly different, then this 

analysis would be erroneous.   

Testing the impact of the new process on the prior 

project demonstrated the results in Table 2. With the 

new cycle-time history bought about by process 

change, there would have been an almost 4 month 

(110 day) improvement in delivery time, with the 

reduced staff carrying cost alone saving $4M. It was 

decided that the impact of being on the market earlier 

in gained revenue was hard to estimate, so it was 

omitted. This means that the outcomes seen 

understate the losses. They do not account for cost of 

delay on the projects delivered late, or the cost of 

delay for the next project that was delayed. Staff 

carrying cost was calculated as the per day cost of the 

teams implementing the project. The calculation was 

simply the yearly IT budget divided by 365 days. 

 
Table 2 – Impact if new process WAS 

used in the prior project 

Process Target Delivered Cost 

Old 

(actual) 

1-Dec 1-Mar 

+90 days 

$18M 

New 

(modeled) 

1-Dec 11-Nov 

-20 days 

$14M 

-$4M 

 

The second part of the analysis was to estimate 

the outcome if the new process wasn’t implemented 

for the test project. The cycle-times for the prior 

project were used in the model for the test project. 

The outcome is shown in Table 3. The new process 

saved at least $1.4M, again only accounting for staff 

carrying cost. 

 
Table 3 – Impact if new process WASN’T 

used in the test project 

Process Target Delivered Cost 

Old 

(modeled) 

31-Dec 5-Feb 

+36 days 

$8M 

+$1.4M 

New 

(actual) 

31-Dec 31-Dec 

On-time 

$6.6M 

 

The combined message to the executive teams 

was that if the new process was in place for the prior 

project - 

a. Delivered on-time rather than 3 months late 

b. $4M decrease in development budget 

 

And if the new process wasn’t implemented for the 

test project - 

a. Test project delivered 1 Month late 

b. Increase of $1.4M development budget 

 

Due to the compelling nature of these forecasts 

even if halved, the decision to fund and roll-out the 

new process to the entire organization was happily 

accepted by all financial and IT staff.  

The ability to quickly model the financial impact 

using the cycle-time data on-hand was central to 

gaining executive sponsorship in the process change 

initiatives. Three years after this analysis, the teams 

in question still model, assess viability and measure 

resulting impact of all process changes. 

Confidential data available on request. 



6. Conclusion 

 
This paper has outlined a method for calculating 

the financial impact of software development process 

change. Practitioners can choose to predict likely 

impact before a change is implemented, and/or assess 

its impact post change process implementation.  

The software industry has a history of 

documented use of Rayleigh and Weibull 

distributions for various problems. Prior examples 

exist for predicting remaining defects in the field and 

staff capacity planning. This paper continues the 

Weibull tradition with a theory of why cycle-time for 

software development follows this distribution within 

a narrow range of parameter values. This paper 

provides new sources of evidence in support of this 

claim – 

1. Theory of why Weibull distribution is the 

outcome of the typical process constraints 

seen in software development. 

2. The Weibull shape parameter can be seen to 

correlate with progressive process changes 

over forty years. 

 

Knowing cycle-time follows the Weibull 

distribution allows informed decisions to be made in 

risk mitigation and process change decisions. This 

paper makes the following advice – 

1. Calculations on cycle-time data should not 

assume a Normal Distribution. This is 

evident in commercial tooling vendors who 

show erroneous confidence level limits on 

control charts. 

2. Agile processes has compressed the shape 

and scale of the cycle-time distribution, 

decreasing its variability. 

3. Computing the shape and scale parameters of 

the cycle-time distribution allows informed 

process recommendations.  

 

Probabilistic modelling allows financial impact of 

process change to be estimated. Monte Carlo 

modeling using captured cycle-time samples and 

known project outcomes allows simple what-if 

experiments based on hypothetical cycle-time 

improvements. This is a rapid way to quantitatively 

determine economic outcome.  

The commercial case study shown in this paper 

demonstrates how quickly a financial argument can 

be made for the continually challenging the current 

process and investing in improvements. The payback 

is rapid.  
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